7 AFFORDABLE AND CLEAN ENERGY

SDG 7: Affordable & Clean Energy

GD Goenka University – Sustainability Initiatives and Achievements

About Us

GD Goenka University (GDGU), established in 2013, is a State Private University located on Sohna Road, Gurugram, in the National Capital Region of India. Founded under the vision of Shri A.K. Goenka, GDGU is part of the larger G.D. Goenka Group, which has been a pioneer in Indian education for over three decades. The University aspires to be a global leader in higher education, nurturing intellectual excellence, creativity, leadership, and social responsibility. Guided by its motto "Thrive to Life", GDGU emphasizes holistic development, preparing students to succeed academically, professionally, and personally.

GDGU offers a wide spectrum of undergraduate, postgraduate, and doctoral programmes across multiple disciplines, including Engineering & Sciences, Management, Law, Liberal Arts & Social Sciences, Healthcare & Allied Sciences, Hospitality & Tourism, Design & Creative Studies, and Agricultural Sciences. The University is recognized by the University Grants Commission (UGC) and approved by relevant professional councils, ensuring high academic standards and global relevance.

The University's 60-acre state-of-the-art campus is nestled at the foothills of the Aravalli Range, providing modern classrooms, advanced laboratories, smart learning spaces, premium hostels, and extensive sports and recreational facilities. GDGU is committed to sustainable development, integrating renewable energy solutions such as solar power, promoting energy efficiency, rainwater harvesting, waste recycling, and electric mobility solutions—efforts directly aligned with SDG 7: Affordable and Clean Energy. These initiatives reduce the campus's carbon footprint while instilling a culture of environmental responsibility among students.

With a diverse body of several thousand students from multiple nationalities, GDGU fosters a culturally rich, inclusive, and collaborative learning environment. The University emphasizes interdisciplinary learning, industry engagement, global exposure through student exchange programmes, internships, and a strong focus on innovation and entrepreneurship. Its proximity to Delhi and major corporate hubs enhances employability and industry readiness of graduates.

GD Goenka University defines excellence as inspiring students to learn, innovate, and serve, creating a lasting positive impact on society. By combining academic rigor, holistic growth, and sustainable practices, GDGU prepares responsible global citizens while actively contributing to affordable and clean energy solutions.

Green Energy & Environment Audit Report

SENERGY CONSULTANTS PVT LTD

Ref: SCPL-PR-922-211223 Date: December 21, 2023

Green, Energy and Environment Audit Report G.D. Goenka University

II Executive Summary

The premises were evaluated against the various criterions laid down by the various Ranking and Accreditation agency. The major observations are:

Renewable Energy:

- · The Roof-top Solar Photovoltaic System with grid synchronization is installed on most of the roofs.
- The hostels are installed with heat pumps for generating hot water, while Roof-top Solar Photovoltaic System with grid synchronization is installed on the roofs. This is more efficient and effective methods for energy optimization.
- The possibility of installing biogas plant from canteen waste is being assessed and planned during the
 next semester. This could reduce LPG consumption in the canteen, while generating organic manure.
 The University has already installed compost pit, while remaining food waste is handed over to an
 agency for composting. The agency provides organic manure for gardening and plantation.

Green Campus Initiative:

- The movement of vehicle inside the campus is restricted and limited to cater to very few and specific requirements.
- Pedestrian friendly pathways have been constructed for easy movement inside the campus.
- · The electrical vehicles, bicycles are available for in-campus movement.
- · There is a ban on plastic usage inside the campus.
- The campus is surrounded with a lot of greenery, trees, and proper landscaping.
- The campus has sewage treatment plants to treat the entire sewage is treated; which is then used for gardening. There is no discharge of treated water outside campus.
- The rain water in the entire campus (rooftop as well as open areas) is systematically collected and fed back in to the soil for ground water recharge. There is marked improvement in the water table over a period time after incorporating this path breaking rain water harvesting technique.

Environment & Energy Initiative:

There are multiple activities and initiatives taken for conservation of energy and environment.

Air Quality & Ventilation:

- The entire space is air conditioned and properly ventilated to ensure proper air quality.
- The fans are appropriately installed to ensure proper air circulation and minimize load on the air conditioning.
- The outdoor plants have also been provided to improve the environment.

Lighting System:

- The usage of natural light is optimized through well designed structure and windows.
- Almost all the light fitting are provided with high efficiency LED lamps.
- The lighting in washrooms and common area is being automated with segsor based control.

Water Quality & Conservation:

The ground water drawn through a set of three pore wells and further the depending on the usage.

Recognized among India's greenest campuses with prestigious LEED Platinum Certification for sustainability excellence.

Commitment to Sustainability: GD Goenka University Sohna Campus Wins LEED v4.1 EBOM Platinum Level Certification

- BETTER ENERGY PERFORMANCE SOLAR PV PLANT, SMART HVAC
- BETTER WATER PERFORMANCE LOW-FLOW FIXTURES AND WATER REUSE SYSTEMS
- BETTER WASTE MANAGEMENT STRONG RECYCLING AND RESPONSIBLE DISPOSAL
- BETTER INDOOR AIR QUALITY

Sustainable Development Goals - SDG 7: Affordable and Clean Energy

SDG 7 aims to ensure access to affordable, reliable, sustainable, and modern energy for all. While global progress has been made in increasing access to electricity and improving energy efficiency, millions of people still lack reliable energy, and access to clean cooking fuels and technologies remains insufficient. Inadequate energy infrastructure also affects critical services such as healthcare, limiting the capacity of health facilities to function effectively.

GD Goenka University actively contributes to SDG 7 through education, research, and sustainable campus initiatives. The University integrates renewable energy solutions across its campus, including solar power installations, energy-efficient infrastructure, and electric mobility systems, reducing carbon emissions while providing a living laboratory for students. Through its solar energy-based training programmes, GDGU offers hands-on education and skill development for emerging energy planners, engineers, and rural youth, equipping them to drive sustainable energy solutions.

The University's research focuses on optimizing the use of natural resources and advancing integrated practices for cleaner, more affordable energy production. By exploring synergies in resource efficiency, energy recycling, and renewable technologies, GDGU is building expertise in sustainable energy and empowering students and communities to implement practical, high-impact solutions. These initiatives reinforce the University's commitment to fostering a culture of sustainability, innovation, and social responsibility while supporting global progress toward SDG 7.

Targets:

Goal 7.2: University measures towards affordable and clean energy

Goal 7.2.1: Energy-efficient renovation and building

Goal 7.2.2: Upgrade buildings to higher energy efficiency

Goal 7.2.3: Carbon reduction and emission reduction process

Goal 7.2.4: Plan to reduce energy consumption

Goal 7.2.5: Energy wastage identification

Goal 7.2.6: Divestment policy

Goal 7.3: Energy use density

Goal 7.3.1 Indicator: Energy usage per sqm

Goal 7.4: Energy and the community

Goal 7.4.1: Local community outreach for energy efficiency

Goal 7.4.2: 100% renewable energy pledge

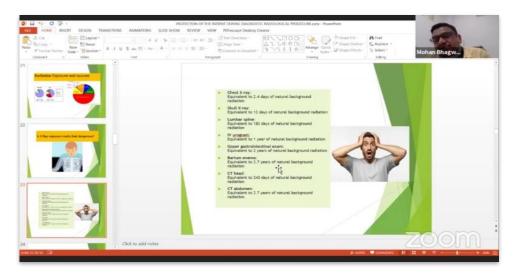
Goal 7.4.3: Energy efficiency services for industry

Goal 7.4.4: Policy development for clean energy technology

Goal 7.4.5: Assistance to low-carbon innovation

In alignment with the 2030 Agenda for Sustainable Development, GD Goenka University (GDGU) in Gurugram continues its unwavering commitment to a sustainable future that ensures access to clean, reliable, and affordable energy for all. Since its establishment in 2013, GDGU has remained dedicated to fostering positive societal impact, not only through its academic initiatives but also by inspiring its students to champion sustainability in their own capacities.

As an institution with the power to drive change, GDGU actively engages with policymakers, industry leaders, businesses, NGOs, media, students, and academic scholars to explore and implement collaborative solutions aimed at reducing energy consumption, promoting renewable energy production, and contributing to the global pursuit of a sustainable energy future. Our dedication to Sustainable Development Goal 7 (SDG-7), which focuses on affordable and clean energy, remains central to our mission.


At GDGU, our commitment to sustainability extends beyond rhetoric and embraces practical action. The University's campus serves as a living laboratory for sustainable practices, with multiple SDG-7 related initiatives spanning research, innovation, teaching, operations, outreach, and partnerships. GDGU has undertaken efforts to map academic programs and courses to relevant aspects of SDG-7, creating a comprehensive sustainability course inventory. Student engagement in sustainability, including community-based learning, renewable energy projects, and energy awareness campaigns, further embeds SDG-7 principles within the University's educational ethos.

Looking forward, GD Goenka University remains resolute in advancing SDG-7 and contributing to a cleaner, more sustainable energy landscape. We are committed to shaping not only informed and skilled graduates but also responsible global citizens who actively contribute to sustainable development, clean energy solutions, and positive change for society and the planet.

Awareness Program

Awareness of Radiation Protection" (29th June 2021)

Report design for SDG-7 at GDGU:

- Research on clean energy
- University measures towards affordable and clean energy
- Energy use density
- Energy and the community
- News

Research on clean energy:

GD Goenka University collaborates with national and international partners to promote clean energy. The University focuses on solar power, green campus initiatives, and optimal energy use, using the campus as a living laboratory for sustainable energy solutions.

University measures towards affordable and clean energy:

- GDGU follows India's energy efficiency standards for new buildings and renovations to reduce carbon emissions, optimize electricity use, and minimize waste.
- Buildings are designed for reduced heat absorption, natural ventilation, and lighting efficiency.
 Energy-efficient technologies such as LED lighting, smart classrooms, and locally sourced materials are used to lower running costs and support sustainable energy use.

Electrical System

Lamps:

GD Goenka University has upgraded the lighting across the campus to high-efficiency LED lamps in offices, classrooms, hostels, labs, and street lighting. Lighting in washrooms and common areas is automated using sensor-based controls to optimize energy usage.

Details of Light Fittings:

Location	LED Lamps 36 W	LED Lamps 10 W
Phase 2 Hostel	418	216
Dining	300	240
Fitness	180	50
Hercules	130	50
Guest House	40	28
Sophia Hostel	104	84
Academic Building	900	114
Lab Building	548	30

Air Conditioning Units

GD Goenka University operates a centralized chilled water system along with VRV units, split AC units, and precision AC units in UPS and server rooms. The chilled water system includes:

- 2 water-cooled centrifugal chillers (550 TR each)
- Primary chilled water pumps (18.5 kW × 2)
- VFD-driven secondary chilled water pumps (37 kW)
- Condenser pumps (45 kW × 2)
- Cooling towers (300 TR × 4)

The campus has over 500 Air Handling Units (AHUs) catering to all air-conditioned areas. Fans are operated at lower speeds to enhance air circulation, improving efficiency and reducing energy consumption.

Air Conditioning System

- The entire campus is air-conditioned using centralized Chilled Water Systems and Variable Refrigerant Volume (VRV) units. Operations are automated to optimize energy consumption.
- All windows are equipped with Double Walled Glass (DWG) to minimize heat gain and loss.
- The outer glass panes are tinted or glazed to reduce heat gain from direct solar radiation.
- As centralized chilled water systems make it difficult to segregate vacant spaces, they are being progressively replaced with energy-efficient VRV systems.
- Room temperatures are maintained between 24°C and 25°C, within recommended comfort levels.
- Air conditioners are serviced regularly and well maintained to ensure efficient operation.
- The performance of the centralized chiller system is monitored and remains satisfactory.
- VRV and other air conditioning units are energy-efficient and compliant with current standards.
- All air-conditioned spaces are properly sealed to prevent outside air ingress and cold air loss.

System Details by Location:

Location	VRV/HP	Chiller TR
Phase 2 Hostel	-	1600
Fitness	-	-
Hercules	-	94
Dining	-	27
Guest House	-	100
Sophia Hostel	-	1125
Academic Building	-	375
Lab Building	-	-

VRV Systems (Outdoor Units)

Double Walled Glass (DWG) with tinted glazing is used to minimize heat ingress.

Control for VRV Units (Remote Switching & Monitoring

Roof-top Solar Photovoltaic System

GD Goenka University has installed roof-top solar photovoltaic systems across multiple campus buildings, contributing to renewable energy generation and reducing dependency on grid electricity. The installed capacity and actual power generation details are as follows:

Sr No	Location	Inverters (kW)	Panels (kW)
1	DG Room	60	68.25
2	Dining Hall	60	74.75
3	A Block University	120	140.225
4	B Block University	120	134.225
5	C Block University	50	61.75
6	Parking	200	234
7	Basement	80	87.75
-	Overall	690	800.95

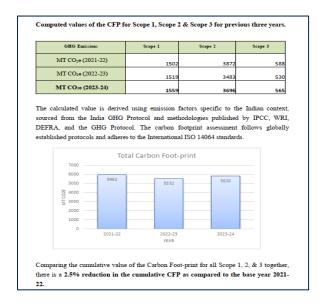
Renewable Energy (On-Site Solar)

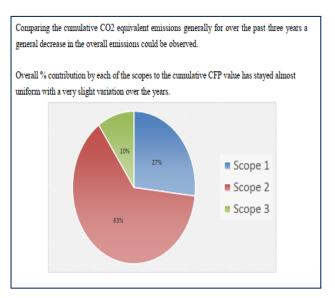
GD Goenka University has installed a total of 563.2 kW of on-site solar capacity. During inspection, it was observed that a thick layer of dust had accumulated on the panels due to limited maintenance, which may reduce the efficiency of renewable energy generation. Regular cleaning and upkeep are recommended to ensure optimal performance of the solar installation.

Waste Management

- The campus is equipped with sewage treatment plants, and all treated sewage water is reused for gardening. No treated water is discharged outside the campus.
- Organic waste is segregated and composted on-site, while remaining food waste is handed to an
 external agency for composting. The resulting organic manure is used for gardening and
 plantation.
- Separate dustbins are installed across the campus for the collection of dry and wet solid waste.
- No hazardous or medical waste is generated within the University.
- Slightly obsolete electronic gadgets, including computers, are donated to nearby schools.
- Waste paper is collected and sent to an agency for recycling or reprocessing, with a portion reused on campus.

Green IT Culture


- GD Goenka University uses energy-efficient computers and laptops across departments to reduce overall electricity consumption.
- The University encourages electronic communication and digital workflows to minimize paper use.
- Most paper used on campus is reused for double-sided printing, reflecting GDGU's commitment to sustainable and eco-friendly practices.


Carbon Foot Print

- A carbon footprint report is an essential tool for universities aiming to address environmental challenges and demonstrate a commitment to sustainability. Universities are microcosms of society, often encompassing a wide range of activities that contribute to greenhouse gas (GHG) emissions, including energy consumption, transportation, construction, and waste management. By quantifying these emissions, a carbon footprint report provides a clear picture of the environmental impact of campus operations. This data allows institutions to identify areas of inefficiency and prioritize actions to reduce emissions, paving the way for more sustainable practices.
- Such reports also align universities with global efforts to combat climate change, including the United Nations' Sustainable Development Goals (SDGs) and the Paris Agreement. As centers of education and research, universities have a unique responsibility to lead by example and inspire broader societal changes. A robust carbon footprint report not only helps institutions measure progress toward their sustainability goals but also supports the development of innovative solutions that can benefit communities beyond the campus. By addressing their carbon footprint, universities can directly contribute to reducing global emissions while fostering a culture of environmental awareness among students, faculty, and staff.
- The benefits of a carbon footprint report extend beyond environmental stewardship. In today's competitive landscape, sustainability is a key factor influencing decisions made by students, faculty, and funding organizations. Demonstrating a commitment to reducing emissions enhances the university's reputation, attracting environmentally conscious individuals and securing partnerships or grants aimed at promoting sustainability. Furthermore, regulatory frameworks and local or national climate policies increasingly require organizations to monitor and mitigate their environmental impact. A carbon footprint report ensures compliance with these requirements and positions the institution as a proactive leader in climate action.

Moreover, integrating findings from a carbon footprint report into educational programs and
research initiatives amplifies its impact. Universities can use the data to inform curriculum design,
conduct research on climate solutions, and provide students with hands-on learning
opportunities in sustainability practices. This approach not only enriches the educational
experience but also equips future leaders with the knowledge and skills needed to address
environmental challenges effectively

When it comes to reducing human-caused emissions of greenhouse gases, especially carbon dioxide, trees play a vital role. Through photosynthesis, trees absorb CO_2 from the atmosphere and use it for growth—helping to balance the ecosystem. GD Goenka University actively contributes to this effort by organizing plantation drives throughout the year, both within the campus and in nearby communities, to enhance green cover and promote environmental awareness.

Various initiatives undertaken by the University to reduce carbon emissions include:

- 1. Eco-friendly transportation within the campus
- 2. Promotion of bicycle usage among students and staff
- 3. Use of electric vehicles for on-campus mobility
- 4. Adoption of natural gas for cleaner energy operations
- 5. Regular tree plantation drives in and around the campus

Green Campus Initiatives

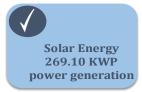
Landscaping of Campus

Battery Powered Vehicles

Eco-Friendly Campus

CNG Bus and Cars

Pedestrian Pathways



Plastic Free Campus

Alternate Sources of Energy

Energy

www.gdgoenkauniversity.com

Student Initiative & Collaboration

GD Goenka University actively supports Sustainable Development Goal 7 by encouraging student-led initiatives, academic programs, and collaborations that promote clean and affordable energy solutions. The School of Engineering and Sciences offers specialized programs such as B.Tech in Energy Engineering and M.Tech in Renewable Energy Engineering, which equip students with the knowledge and skills to develop sustainable energy technologies, including solar, wind, and bioenergy systems. Students actively participate in research projects, innovation challenges, and industrial internships focused on renewable energy and energy efficiency.

Through the university's Eco Club and Innovation & Entrepreneurship Centre, students organize energy conservation campaigns, awareness drives, and workshops on sustainable energy practices. The university has also integrated renewable energy solutions on campus, such as solar photovoltaic systems and energy-efficient lighting, making the campus a living model of sustainability.

In addition, GD Goenka University's annual SPEED (Student Project Exhibition on Engineering Design) showcases student projects on renewable energy and green technology, fostering creativity and problemsolving skills among young innovators. Collaborative partnerships with industries, government agencies, and NGOs provide students with opportunities to translate their clean energy ideas into real-world applications. Through these initiatives, GD Goenka University cultivates a culture of sustainability, empowering students to become future leaders in the clean energy transition and contributing directly to the achievement of SDG 7 ensuring access to affordable, reliable, sustainable, and modern energy for all.

WELCOME TO THE ENERGY ENGINEERING DEPARTMENT AT GD GOENKA UNIVERSITY

Energy is the driving force of modern civilization, and as the world shifts towards sustainable and efficient energy solutions, the demand for skilled professionals in this sector is skyrocketing. The Energy Engineering Department at GD Goenka University is committed to equipping future engineers with the expertise to lead this transformation

Our ${\bf B.Tech\,program\,in\,Energy\,Engineering}$ gives the potential undergraduate students to specialize in $cutting \ edge \ programs \ in \ energy \ to \ help \ the \ students \ to \ become \ the \ leaders \ of \ the \ energy \ sector. \ Students$ can choose to specialize in Renewable Energy, Nuclear Energy or in Oil & Gas Engineering

 $Our flagship program \ \textbf{M.Tech in Renewable Energy Engineering} \ program \ offers \ cutting-edge \ specializations$ in Solar Power, Wind Power, Marine Power, Hydropower and Biomass among others. It is designed to prepare students for dynamic careers in one of the most crucial sectors of the 21st century. With India's ambitious goals for net-zero emissions, rapid expansion of renewable energy capacity, and increasing nvestments in nuclear power, this field presents unparalleled growth opportunities. Our program is designed to empower the future energy leaders for a sustainable world.

Our M.Tech in Nuclear Engineering program offers cutting-edge analyses of Nuclear Energy Reactors, Nuclear Processes, Non-destructible Testing Methods and Medical Applications as well as Rese

Our M.Tech programs are designed to be dual degree programs and the student in the second year can choose a dual degree option in France or can choose to do 6 months Internship & Exchange abroad. Our B.Tech Programs also have one semester exchange abroad to create the global engineers of the future.

- Specializations and Expertise Gain in-depth expertise in cutting-edge technologies like solar, wind, hydro, bloenergy, oil & gas, petroleum, power systems and nuclear power.

 "Global Exposer: Study Abroad & International Internships The last year of the programs includes semester abroad and/or an internship opportunity at a prestigious international university or research nds-on global ex
- State-of-the-art Research & Laboratories Work with advanced energy systems, simulation software, and high-tech labs to develop innovative energy solutions.

 Industry-Aligned Curriculum & Collaborations – Engage with experts from leading energy compa
- projects, and gain exposure to industry best practices Internships & Placement Support - Benefit from our strong network of industry partners, en
- portunities in renewable energy firms, power plants, research labs, policy organization

A GROWING FIELD WITH LIMITLESS CAREER PROSPECTS

oming a global leader in clean energy adoption, with ambitious targets like 500 GW of renewable energy by 2030 and increasing investments in nuclear power expansion. This has created a ssive demand for skilled professionals in **energy generation, storage, distribution, and policy-making.** Induates from our program will be well-equipped to **lead projects in sustainable energy, contribute to** Graduates from our program will be well-equipp

BE A PART OF INDIA'S ENERGY REVOLUTION

This is more than just an academic program—it's a gateway to a transformative career. By choosing Energy Engineering Programs at GD Goenka University, you will gain not only a strong technical foundation

EMPOWERING THE FUTURE ENERGY LEADERS FOR A SUSTAINABLE WORLD

in us in building a clean, efficient, and sustainable world. Your journey to becoming an energy leader starts

Research and Capacity Building Aligned with SDG 7

GD Goenka University actively contributes to the goals of affordable and clean energy (SDG 7) through its engagement in multiple PMKVY 4.0 Green Jobs projects, funded by the National Skill Development Corporation (NSDC). These initiatives focus on skill development and vocational training in areas such as solar power installation, maintenance, and entrepreneurship, empowering youth with practical expertise in renewable energy technologies.

Through these short-term and year-long projects, faculty members and trainers at GDGU are building capacity for a cleaner energy future—promoting sustainable livelihoods, supporting national green energy goals, and fostering innovation in solar and environmental technology sectors.

SI	Name of of the PI/ Co-	Title of the research	Name of the	Duration	Year of
No	PI/Name of the	project, endowments,	funding agency	Duration	award or
140	person holding the	Research Chairs	runuing agency		Sanction
	Chair	nescuren enans			Surretion
1	Prasenjit Mondal	PMKVY 4.0 RPL Green Jobs-	National Skill	3	2023-24
		Safai Karamchari	Development	Months	
			Corporation		
2	Anju Rani	PMKVY 4.0 RPL Green Jobs-	National Skill	3	2023-24
		Santization Expert	Development	Months	
			Corporation		
3	Uzma Rukshar	PMKVY 4.0 RPL Green Jobs-	National Skill	3	2023-24
		Helper	Development	Months	
			Corporation		
4	Anindita Roy	PMKVY 4.0 Special Project	National Skill	2	2023-24
	Chowdhury	Green Jobs- Solar Water	Development	months	
		Heater Installer (Surya	Corporation		
		Mitra)			
5	Sudipta K Mishra	PMKVY 4.0 Special Project	National Skill	2	2023-24
		Green Jobs- Solar Light	Development	months	
		Installer (Surya Mitra)	Corporation		
6	Naresh Sharma	PMKVY 4.0 Special Project	National Skill	2	2023-24
		Green Jobs- Solar	Development	months	
		Technician (Surya Mitra)	Corporation		
7	Deepika Garg	PMKVY 4.0 Special Project	National Skill	2	2023-24
		Green Jobs- Solar Panel	Development	months	
		Expert (Surya Mitra)	Corporation		
8	Shashikant Gupta	PMKVY 4.0 Special Project	National Skill	2	2023-24
		Electronics- CCTV	Development	months	
		Installation Technician	Corporation		
9	Alina Banerjee	PMKVY 4.0 Special Project	National Skill	2	2023-24
		Electronics- CCTV and	Development	months	
		Security Expert	Corporation		
10	Renu Chaudhary	PMKVY 4.0 Special Project	National Skill	2	2023-24
		Electronics- CCTV Repair	Development	months	
		Technician	Corporation		
11	Manka Sharma	PMKVY 4.0 Special Project	National Skill	2	2023-24
		Electronics- Wiring	Development	months	
		Technician	Corporation		
12	Rangoli Goyal	PMKVY 4.0 Special Project	National Skill	2	2023-24
		Green Jobs- Solar	Development	months	
		Photovoltaic Entrepreneur	Corporation		
13	Mainak Basu	PMKVY 4.0 Special Project	National Skill	2	2023-24
		Green Jobs- Solar	Development	months	
		Photovoltaic Assembling	Corporation		
4.4	NI-l	Expert	Netteral CUII		2022.24
14	Neha	PMKVY 4.0 Special Project	National Skill	2	2023-24
		Green Jobs- Solar	Development	months	
		Photovoltaic Technician	Corporation		

15	Mir Mohsin John	PMKVY 4.0 Skill Hub Green	National Skill	1 year	2023-24
13	IVIII IVIOIISIII JOIIII			1 year	2023-24
		Jobs-Safai Karamchari	Development		
			Corporation		
16	Achyut Sharma	PMKVY 4.0 Skill Hub Green	National Skill	1 year	2023-24
		Jobs- Safai Mitra	Development		
			Corporation		
17	Sandeep Kumar Yadav	PMKVY 4.0 Skill Hub Green	National Skill	1 year	2023-24
		Jobs-Santization Technician	Development		
			Corporation		
18	Rajat Sharma	PMKVY 4.0 Skill Hub Green	National Skill	1 year	2023-24
		Jobs-Safety Expert	Development		
			Corporation		

Publications

The university's faculty and researchers actively contribute to publications addressing global challenges related to sustainable energy and environmental responsibility. GD Goenka University's research outputs include policy briefs, journal articles, and case studies focusing on renewable energy technologies, energy efficiency, sustainable infrastructure, and green innovation. These scholarly contributions demonstrate the university's commitment to advancing Sustainable Development Goal 7 (SDG 7) by generating actionable knowledge that supports affordable, reliable, and clean energy solutions for a sustainable future.

SDG - 7 Affordable clean energy - Publications - 70

S.No.	Туре	Title	Authors	Journal / Book	Year
1	Article	DoE based development and optimization of ion sensitive in situ nanoemulgel containing bimatoprost for sustained ocular delivery	Singh, M.; Devi, M.K.; Singh, R.P.; Monika; Jhawat, V.C.	International Journal of Biological Macromolecules	2025
2	Article • Open access	Solar ViT: Vision Transformer for Fault Detection in Solar PV Systems	Makwane, P.; Kumar, Y.; Srivastava, A.; Singh, S.; Sisodiya, V.	International Journal of Basic and Applied Sciences	2025
3	Book Chapter	Intellectual property and energy efficiency in food safety: Legal protections for innovations in India	Singh, A.; Rana, S.; Tiwari, P.; Kaushik, K.	Energy Efficient Technologies for Food Safety Quality and Security	2025
4	Book Chapter	Future Trends and Emerging Technologies of Heat Exchangers	Jana, S.; Verma, D.; Gupta, S.	Advanced Applications in Heat Exchanger Technologies Al Machine Learning and Additive Manufacturing	2025
5	Article • Open access	Optimization and Intelligent Control in Hybrid Renewable Energy Systems Incorporating Solar and Biomass	Johri, A.; Verma, V.; Basu, M.	Energy Engineering Journal of the Association of	2025

				Energy Engineering	
6	Conference Paper • Open access	Assessing the Environmental Impact of Advanced Energy Storage Solutions: A Comparative Lifecycle Analysis	Mishra, M.; Dutt, A.; Saini, N.; Srikanth, T.; Talukdar, S.	E3S Web of Conferences	2024
7	Conference Paper • Open access	Sustainable Approaches for Recycling Solar Panel Materials: A Circular Economy Perspective	Yadav, R.; Singla, A.K.; Ghalwan, M.; Vyas, A.; Karthikeyan, R.	E3S Web of Conferences	2024
8	Conference Paper • Open access	Sustainable Energy Conversion via Organic Photovoltaics: Material Selection and Evaluation	Sharma, V.; Nautiyal, M.; Saini, P.; Charyulu, V.S.; Vyas, A.	E3S Web of Conferences	2024
9	Conference Paper • Open access	Green Synthesis of Nanocomposite Catalysts for Environmental Remediation	Jain, A.K.; Prakash, S.; Bansal, S.; Satyanarayana, G.V.; Naath Mongalc, B.	E3S Web of Conferences	2024
10	Conference Paper • Open access	Optimizing Solar-Wind Hybrid Microgrid Designs with Particle Swarm Techniques for Sustainable Energy Integration	Jain, A.K.; Prakash, S.; Bansal, S.; Satyanarayana, G.V.; Mongalc, B.N.	E3S Web of Conferences	2024
11	Conference Paper • Open access	Recycling of Solar Panels: Sustainable Disposal of Photovoltaic Materials	Gera, R.; Singh, H.; Ikram, M.; Prasad Raju, V.S.; Kampani, S.	E3S Web of Conferences	2024
12	Conference Paper • Open access	Sustainable Vision-Based Navigation for Autonomous Electric Vehicle Charging	Srivastava, N.; Singh, H.; Ikram, M.; Prasad Raju, V.S.; Kampani, S.	E3S Web of Conferences	2024
13	Conference Paper • Open access	Green Synthesis of Nano catalysts for Sustainable Petrochemical Refining	Singla, T.S.; Bisht, D.; Taneja, M.; Hemalatha, K.; Talukdar, S.	E3S Web of Conferences	2024
14	Conference Paper • Open access	Sustainable Approaches for Recycling Lithium-ion Battery Materials	Gera, R.; Bhardwaj, N.; Mishr, N.; Bindu, O.S.; Sharma, P.	E3S Web of Conferences	2024
15	Conference Paper • Open access	Particle Swarm Optimization for Sizing of Solar-Wind Hybrid Microgrids	Sanduru, B.T.; Negi, A.S.; Sharma, N.K.; Kalele, G.; Vyas, A.	E3S Web of Conferences	2024
16	Conference Paper • Open access	Novel Nanocomposite Electrolytes for Sustainable Fuel Cells	Chhabra, S.; Joshi, A.; Mishra, S.; Kampani, S.; Kumar, K.	E3S Web of Conferences	2024
17	Conference Paper • Open access	Characterization of Advanced Nanomaterials for Sustainable Energy Applications	Mittal, A.; Deorari, R.; Pandey, S.; Varanasi, S.; Mongal, B.N.	E3S Web of Conferences	2024
18	Conference Paper • Open access	Sustainable Production of Polymer Matrix	Dixit, S.; Nautiyal, R.D.; Parashar, K.; Mouli, K.C.; Vyas, A.	E3S Web of Conferences	2024

		Nanocomposites for Energy Storage			
19	Conference Paper • Open access	Life Cycle Analysis of Energy Storage Technologies: A Comparative Study	Sanduru, B.T.; Dhyani, M.; Thakur, R.; Bhardwaj, N.; Talukdar, S.	E3S Web of Conferences	2024
20	Conference Paper • Open access	Fuzzy Logic-Based Energy Management in Sustainable management for Renewable Integration	Usanova, K.I.; Davu, S.R.; Pandey, S.; Deorari, R.; Vyas, A.	E3S Web of Conferences	2024
21	Conference Paper • Open access	Sustainable Synthesis of Perovskite Solar Cells Using Green Materials	Kansal, L.; Joshi, A.; Mishra, R.; Lakshmi Prasanna, J.L.; Sharma, P.	E3S Web of Conferences	2024
22	Conference Paper • Open access	Catalytic Conversion of Biomass to Biofuels using Green Nanocatalysts	Usanova, K.I.; Dhall, H.; Chandna, M.; Mouli, K.C.; Vyas, A.	E3S Web of Conferences	2024
23	Review	Earth abundant transition metal complexes as molecular water oxidation catalysts	Adnan Khan, M.; Khan, S.; Sengupta, S.; Naath Mongal, B.; Naskar, S.	Coordination Chemistry Reviews	2024
24	Conference Paper • Open access	The Economic Viability of Smart Home Investments: A Cost-Benefit Analysis	Larionova, Y.V.; Sharma, D.; Nijhawan, G.; Kumari, N.; Devi, S.	Bio Web of Conferences	2024
25	Conference Paper • Open access	Energy Efficiency Assessment in Smart Homes: A Comparative Study of Energy Efficiency Tests	Malysheva, A.A.; Rawat, B.S.; Singh, N.; Jena, P.C.; Kapil	Bio Web of Conferences	2024
26	Conference Paper • Open access	Tracing the Path to Sustainability: Domestic Electricity Consumption and Transitioning to Sustainable Energy	Chowdhury, R.R.; Sirisha, K.; Yadav, S.K.; Saxena, S.; Gupta, A.	Bio Web of Conferences	2024
27	Conference Paper • Open access	IoT in Home Automation: A Data-Driven User Behaviour Analysis and User Adoption Test	Vasilyeva, E.; Bisht, D.; Chhabra, S.; Sharma, M.; Yellanki, V.S.	Bio Web of Conferences	2024
28	Conference Paper • Open access	Enhancing Smart City Services with AI: A Field Experiment in the Context of Industry 5.0	Taskaeva, N.N.; Joshi, S.K.; Dixit, S.; Jena, P.C.; Vyas, A.	Bio Web of Conferences	2024
29	Conference Paper • Open access	Reducing Carbon Emissions: An Analysis of Smart City Initiatives	Chulenyov, A.S.; Nautiyal, M.; Singla, A.K.; Arora, R.; Kumar, A.	Bio Web of Conferences	2024
30	Conference Paper • Open access	Al and Autonomous Systems: An Experiment in Industry 5.0 Transformation	Natalia, V.; Singh Bisht, Y.S.; Parbhakar, P.K.; Mishra, S.K.; Rajasekhar, N.	Bio Web of Conferences	2024

31	Conference Paper • Open access	Sustainability Measures: An Experimental Analysis of Al and Big Data in Industry 5.0	Vatin, N.I.; Negi, G.S.; Yellanki, V.S.; Mohan, C.; Singla, N.	Bio Web of Conferences	2024
32	Conference Paper	Blueprint for a Commercial Spaceport in the UAE	Guven, U.; Goel, E.	Proceedings of the International Astronautical Congress (IAC)	2024
33	Conference Paper	Lunar Mining Potential for Helium 3 for Unlimited Energy	Guven, U.; Goel, E.	Proceedings of the International Astronautical Congress (IAC)	2024
34	Article • Open access	Implementation of Impedance Type Multimode Tandem Photovoltaic DC Booster Converter for Electric Vehicles	Osman, Y.S.K.; Hemachandu, P.; Prabhu, S.; Subbiah, R.; Yogeshkumar	International Journal of Vehicle Structures and Systems	2023
35	Review	Algae-bacteria mediated treatment of wastewater: Optimal recycling and resource recovery	Dhanker, R.; Khatana, K.; Verma, K.; Kumar, R.; Mohamed, H.I.	Biocatalysis and Agricultural Biotechnology	2023
36	Article • Open access	Conjoint application of nano- urea with conventional fertilizers	Upadhyay, P.K.; Dey, A.; Singh, V.K.; Dasgupta, D.; Shukla, G.	PLOS One	2023
37	Review	Biotechnological Applications for Wastewater Treatment through Microalgae: a Review	Goyal, S.; Dhanker, R.; Hussain, T.; Kumar, K.M.; Mohamed, H.I.	Water Air and Soil Pollution	2023
38	Article • Open access	Hybrid Intuitionistic Fuzzy Entropy-SWARA-COPRAS Method for Sustainable Biomass Crop Type Selection	Mardani, A.; Devi, S.; Alrasheedi, M.A.; Singh, M.P.; Pandey, K.	Sustainability (Switzerland)	2023
39	Article	Tapered substrate thickness to enhance the performance of a piezoelectric energy harvester	Anand, A.; Kumar, M.S.	Nanomaterials and Energy	2023
40	Book	Genomics Approach to Bioremediation Principles, Tools, and Emerging Technologies	Kumar, V.; Bilal, M.Q.; Ferreira, L.F.R.; Iqbal, H.M.	Genomics to Bioremediation Principles Applications and Perspectives	2023
41	Article • Open access	A Novel Design of Hybrid Fuzzy Poisson Fractional Order PID Controller for Wind Driven PMSG	Agarwal, N.K.; Prateek, M.; Saxena, A.; Singh, G.K.	IEEE Access	2023
42	Conference Paper	PID/FO-PID Controller Implementation for the Optimal Controlling of Wind Driven PMSG	Agarwal, N.K.; Singh, N.; Saxena, A.	2nd International Conference on Edge Computing and Applications (ICECAA 2023)	2023

43	Conference Paper	Modeling and Analysis of Wind-Driven PMSG for Healthy and Unhealthy Conditions	Agarwal, N.K.; Singh, N.; Saxena, A.	Lecture Notes in Electrical Engineering	2023
44	Book Chapter	Generation of Biofuels from Rice Straw and Its Future Perspectives	Biswas, P.; Mandal, S.; Das, T.; Bursal, E.; Dey, A.	Green Approach to Alternative Fuel for a Sustainable Future	2023
45	Book Chapter	Yeast Cell Factory for Production of Biomolecules	Mittal, M.; Varshney, A.; Singh, N.; Saini, A.; Mani, I.	Biomanufacturing for Sustainable Production of Biomolecules	2023
46	Review • Open access	Advances in Algal Biomass Pretreatment and Valorisation into Biochemical and Bioenergy	Bhatia, S.K.; Ahuja, V.; Chandel, N.; Rajesh Banu, J.; Yang, Y.	Bioresource Technology	2022
47	Article • Open access	Progress in Microalgal Mediated Bioremediation Systems for Removal of Antibiotics and Pharmaceuticals	Chandel, N.; Ahuja, V.; Gurav, R.G.; Yang, Y.; Bhatia, S.K.	Science of the Total Environment	2022
48	Article	A Secure and Energy-Efficient Model for CPS Using Deep Learning Approach	Joon, D.; Chopra, K.	Journal of Theoretical and Applied Information Technology	2022
49	Review • Open access	Biological Approaches Integrating Algae and Bacteria for Wastewater Degradation—A Review	Mathew, M.M.; Khatana, K.; Vats, V.; Dahms, H.U.; Hwang, J.	Frontiers in Microbiology	2022
50	Book Chapter	Phytoremediation: A Sustainable Solution to Combat Pollution	Saxena, K.; Hussain, T.; Dhanker, R.; Jain, P.; Goyal, S.	Biotechnological Innovations for Environmental Bioremediation	2022
51	Book Chapter	Nanomaterials for Light Harvesting	Dey, S.; Talukdar, S.	Nanomaterials for Advanced Technologies	2022
52	Book Chapter	Emerging Bioremediation Strategies for Removal of Pharmaceutical Combinations in Wastewater	Kumari, S.; Singh, R.; Mohapatra, B.	Synergistic Approaches for Bioremediation of Environmental Pollutants	2022
53	Book Chapter	Metaheuristics to Aid Energy- Efficient Path Selection in Mobile Ad Hoc Networks	Mehta, D.; Zafar, S.; Biswas, S.S.; Iftekhar, N.; Khan, S.	Smart and Sustainable Approaches for Optimizing Performance of Wireless Networks	2022

54	Review	Diatoms as a Biotechnological Resource for Sustainable Biofuel Production: A State- of-the-Art Review	Dhanker, R.; Kumar, R.; Tiwari, A.; Kumar, V.	Biotechnology and Genetic Engineering Reviews	2022
55	Article • Open access	Blockchain Enabled Reparations in Smart Buildings–Cyber Physical System	Tiwari, A.; Batra, U.	Defence Science Journal	2021
56	Article • Open access	Finite Element Study of Bio- convective Stefan Blowing Ag- MgO/Water Hybrid Nanofluid	Rana, P.; Makkar, V.; Gupta, G.	Nanomaterials	2021
57	Conference Paper	A Comparative Analysis of Important Energy Conservation Approaches in IoT	Sindhu, A.; Roy, N.R.	Confluence 2021 – 11th International Conference on Cloud Computing, Data Science and Engineering	2021
58	Conference Paper	To Analyze the Comprehensive Review MPPT Techniques of Wind Driven PMSG	Agarwal, N.K.; Rani, A.; Saxena, A.	1st International Conference on Advances in Computing and Future Communication Technologies (ICACFCT 2021)	2021
59	Conference Paper	GEPSO Tuned NN MPPT Control of PV System	Yadav, A.; Rani, A.	IEEE Bombay Section Signature Conference (IBSSC 2021)	2021
60	Article	Synthesis and Photovoltaic Studies of Terpyridine-Based Ruthenium Complexes	Naath Mongal, B.; Bhattacharya, S.; Mandal, T.K.; Datta, J.; Naskar, S.	Journal of Coordination Chemistry	2021
61	Article	Electrocatalytic Hydrogen Production and CO₂ Conversion by Earth- Abundant Metal Complexes	Sengupta, S.; Khan, S.; Naath Mongal, B.; Chattopadhyay, S.K.; Naskar, S.	Polyhedron	2020
62	Book Chapter	Constructed Wetland: A Green Technology for Wastewater Treatment	Choudhary, A.K.; Kumar, P.	Environmental Microbiology and Biotechnology (Vol. 1)	2020
63	Article	Route Aggregation Approach—An Efficacious Technique for Energy Enrichment	Zafar, S.; Mehta, D.	Recent Patents on Engineering	2020
64	Conference Paper	Estimation of Optimum Number of Clusters in WSN	Roy, N.R.; Chandra, P.	Advances in Intelligent Systems and Computing	2020

65	Conference	A Comprehensive Review of	Kumari, B.; Aggarwal,	International	2019
	Paper	Traditional and Smart MPPT	M.	Conference on	
		Techniques in PMSG-Based		Power Electronics	
		Wind Energy		Control and	
				Automation	
				(ICPECA 2019)	
66	Article •	Irrigation in Hilly Areas by	Dangwal, K.K.;	International	2019
	Open access	Capillary Lift	Aggarwal, M.	Journal of	
				Innovative	
				Technology and	
				Exploring	
				Engineering	
67	Article •	Irrigation Using Natural	Dangwal, K.K.;	International	2019
	Open access	Energy Sources	Aggarwal, M.	Journal of Recent	
				Technology and	
				Engineering	
68	Article	Risk Incorporation into the	Jha, A.; Arora, S.	International	2019
		Capital Budgeting Process of		Journal of Recent	
		Solar Power Plants		Technology and	
				Engineering	
69	Conference	EEDAC-WSN: Energy Efficient	Roy, N.R.; Chandra, P.	International	2019
	Paper	Data Aggregation in Clustered		Conference on	
		WSN		Automation	
				Computational	
				and Technology	
				Management	
				(ICACTM 2019)	
70	Conference	Fused Converter Topology for	Saha, T.; Kakkar, S.;	Asia Pacific	2013
	Paper	Wind-Solar Hybrid Systems	Jha, D.K.	Power and	
				Energy	
				Engineering	
				Conference	
				(APPEEC)	

Impact and Way Forward (SDG 7)

GD Goenka University's initiatives in sustainable energy education have significantly contributed to advancing awareness, research, and innovation in the field of clean energy. Through specialized academic programs, workshops, and industry collaborations, students gain both theoretical knowledge and practical skills in renewable energy technologies, energy management, and sustainability practices. The university's focus on experiential learning and interdisciplinary education fosters innovation and environmental responsibility among its student community.

Looking ahead, GDGU aims to further strengthen its contribution to SDG 7 by expanding research in renewable energy, enhancing partnerships with clean-tech industries and government bodies, and integrating green technologies into campus operations. By advancing these strategies, the university remains committed to promoting affordable, reliable, and sustainable energy solutions while preparing students to lead global energy transitions toward a cleaner future.

