15 LIFE ON LAND

SDG 15: Life on land

GD Goenka University – Sustainability Initiatives and Achievements

1. Introduction

Sustainable Development Goal 15 (SDG 15) focuses on protecting, restoring, and promoting the sustainable use of terrestrial ecosystems. It highlights the vital role of forests, biodiversity, and land-based ecosystems in maintaining ecological balance, supporting livelihoods, and sustaining life on Earth.

The goal aims to halt and reverse land degradation, combat desertification, and prevent biodiversity loss through sustainable land management and restoration initiatives. By safeguarding soil fertility, water quality, and carbon sequestration, SDG 15 ensures the long-term health and productivity of natural systems.

A major component of SDG 15 is forest conservation and sustainable management. It emphasizes ending deforestation, restoring degraded forests, and promoting responsible forest use. Forests are essential for regulating climate, conserving biodiversity, and providing livelihoods for millions of people worldwide.


SDG 15 also targets the protection of wildlife by addressing illegal poaching, trafficking, and the destruction of natural habitats. Preserving endangered species is critical to maintaining ecological balance and biodiversity.

In addition, the goal calls for restoring degraded ecosystems, including mountains, drylands, and farmlands, through practices that enhance resilience and sustainability.

The success of SDG 15 is closely linked with other global goals—such as clean water and sanitation (SDG 6), climate action (SDG 13), and life below water (SDG 14)—as healthy terrestrial ecosystems are essential to achieving environmental stability, human well-being, and sustainable development.

GD GOENKA EDUCATION CITY

2. GD Goenka University Initiatives

GD Goenka University is dedicated to advancing Sustainable Development Goal (SDG) 15, which emphasizes the protection, restoration, and sustainable use of terrestrial ecosystems. Through its academic programs, research initiatives, and green-campus practi

ces, the university actively promotes biodiversity conservation, sustainable landscaping, and environmental awareness. Regular plantation drives, tree-adoption programs, and World Environment Day celebrations encourage community participation in ecological preservation. The university's on-campus greenhouse and organic farming units also foster education in sustainable agriculture and natural resource management. These initiatives reflect GDGU's commitment to nurturing environmental responsibility and contributing to a greener, more sustainable future.

a) Education

1.1 Sustainable Use of Land Objective

To advance the goals of SDG 15 ("Life on Land") by promoting sustainable land-use practices, biodiversity conservation, soil and ecosystem health, and responsible management of terrestrial resources through education, research, outreach, and campus action at GDGU.

1.2 Institutional and Academic Context

- The School of Agricultural Sciences at GDGU, accredited by Indian Council of Agricultural Research (ICAR), offers B.Sc. (Hons.) Agriculture, M.Sc. Agriculture, and PhD programmes, integrating courses like "Fundamentals of Soil Science" and "Introduction to Forestry".
- On the SDG 15 web-page, the university states: "Sustainable land-management practices to ensure the resilience of ecosystems and the services they provide, including soil fertility, clean water, and carbon sequestration."
- The broader sustainability commitments of the parent group indicate concrete facility-level actions: for example, 14 borewells across the GDGU campus harvest rainwater, successfully raising the groundwater bed level from 800 to 150 feet.

b) Activities and Initiatives

- Curriculum and Research: The agriculture programme includes soil-science and forestry modules, equipping students with knowledge directly relevant to land-use, ecosystem health, and restoration.
- Campus Sustainability Measures: The university has implemented rain-water harvesting (raising the groundwater bed from 800 ft to 150 ft) and uses hydroponic farming and food-waste-to-manure conversion for horticulture.
- Institutional Outreach: The group has adopted 10 villages in the Sohna/Gurugram region for extension activities, which include awareness on sustainable land-management practices.

Mushroom Production At GDGU

Emasculation In Okra

Outcomes and Impact

- By integrating soil science and forestry education with practical land-use themes, GDGU is preparing graduates with competencies in ecosystem stewardship, supporting SDG 15 targets such as promoting sustainable forest management and combating desertification.
- The campus water management initiative demonstrates measurable improvement in groundwater recharge, which indirectly supports land-ecosystem resilience.
- The adoption of villages for outreach enables the application of sustainable land-use practices in peri-urban and rural areas around Sohna-Gurugram.

Success of Evidence

Empowering the Farming Community

Challenges and Next Steps

- While curriculum, campus measures, and outreach are in place, the reporting currently lacks
 detailed aggregated metrics for land restored, area under sustainable land-use practices adopted,
 biodiversity indices improved, or reduced land-degradation zones attributable to GDGU's
 interventions.
- Next steps could include quantifying the area of land where improved land-use/soil-restoration
 practices have been applied, monitoring biodiversity change and soil health parameters, forming a
 dedicated forum for land-use and ecosystem sustainability, and publishing periodic impact reports
 tracking progress on SDG 15-related indicators.

c) Sustainably Farmed Food on Campus

GDGU's School of Agricultural Sciences offers a comprehensive four year B.Sc. (Hons.) Agriculture programme and a two year M.Sc. in Agriculture, positioning the university to engage deeply in sustainable food production and land use practices. School of Agriculture Through these programmes, students gain expertise in agronomy, crop management, soil science and allied agricultural disciplines, equipping them to address real world

challenges of food security and sustainable farming. Although specific details of on campus food farming initiatives are not publicly detailed, the institution's academic infrastructure in agriculture and agribusiness (for example, the MBA in Agriculture Business Management) show a strong orientation towards the full agricultural value chain from production to markets. MBA in Agriculture Business Management In this light, GDGU is well placed to integrate sustainably farmed food on campus—linking curriculum, research and practical application—to promote efficient land use, reduce environmental impact and contribute to ecosystem health in alignment with SDG 15.

d) Maintain and Extend Current Ecosystems' Biodiversity

Preserving and enhancing biodiversity is central to GD Goenka University's vision of sustainable development and environmental stewardship. The University actively promotes ecosystem conservation through both academic and campus initiatives. The School of Agricultural Sciences marked International Biodiversity Day 2023 by organizing tree-plantation drives, awareness campaigns, and interactive sessions on the sustainable use of biological resources. (Celebration-of-international-biodiversity-day) In addition, GDGU's administrative policies emphasize holistic environmental management, including waste reduction, resource conservation, and the implementation of an Environmental Management System to protect and enhance campus ecosystems. (gdgoenkauniversity.com) Through these efforts, the University not only preserves native flora and fauna but also actively engages students and local communities in habitat restoration, tree planting, and awareness activities. By integrating education, research, and practical action, GDGU fosters resilient terrestrial ecosystems and contributes meaningfully to the achievement of SDG 15 – Life on Land.

GD Goenka University celebrated International Biodiversity Day on 22nd May 2023 at the Crop Cafeteria, Agricultural Farm, reflecting its commitment to the conservation and sustainable use of biological diversity. The event, attended by approximately 35 students along with faculty members from the School of Agricultural Sciences (SOAS) and other schools, focused on increasing awareness of the importance and role of biodiversity. Dr. S. S. Tomar, Dean of SOAS, addressed the participants, emphasizing the need for sustainable utilization of bio-resources and the conservation of biodiversity to prevent habitat degradation and the extinction of threatened species. The celebration included various interactive activities that engaged students and faculty in understanding and promoting ecosystem preservation, reinforcing the University's dedication to safeguarding biodiversity for future generations in line with SDG 15.

e) Educational Programs on Ecosystems

GD Goenka University actively fosters awareness and understanding of ecosystems through its interdisciplinary educational programs. The School of Agricultural Sciences offers B.Sc. (Hons.) and M.Sc. Agriculture programs that integrate ecology, biology, environmental science, and sustainable agriculture, equipping students with both theoretical knowledge and practical skills. The curriculum emphasizes hands-on learning, with students participating in fieldwork, soil and crop management on the university's farms, and research-based internships under the RAWE and AIA programs across different agro-geographies. Emerging technologies, including AI, IoT, and precision farming, are incorporated to promote responsible land-use and ecosystem management. Additionally, students engage in community outreach initiatives, such as tree-plantation drives, soil health monitoring, and biodiversity awareness campaigns, linking classroom learning with real-world conservation efforts. Through these programs, GDGU prepares future environmental leaders capable of promoting sustainable land use, conserving biodiversity, and addressing ecological challenges in alignment with SDG 15 – Life on Land.

f) Sustainable Management of Land for Agriculture (Educational Outreach)

GDGU's School of Agricultural Sciences hosts advanced educational and outreach programmes focused on sustainable agricultural practices and land management. For example, the university organised the conference on "Digital Agriculture" which addressed themes such as Al & IoT in agriculture, remote sensing, and automation of farm management—demonstrating its commitment to climate smart farming and efficient land use. Digital Agriculture Additionally, the broader institution's sustainability initiative includes hydroponic farming and waste to manure conversion, enabling experiential learning in sustainable production systems and reducing pressure on traditional land resources. gdgoenka.com+1

Sustainability

Environmental, Social and Governance (ESG)

At GD Goenka Group, our commitment to ethical, sustainable and responsible business practices is embedded in all our operations. By prioritising accountability, innovation and leadership, we ensure that our efforts towards Environmental, Social and Governance (ESG) values are integrated into our strategy, driving the long term impact across our ventures. The ESG framework we have set for GD Goenka Group enables us to create lasting value, not only for our organisation but also for the communities and the environment we aspire to serve.

g) Sustainable Use, Conservation and Restoration of Land (Policy)

GDGU has embedded sustainability into its institutional framework via its dedicated SDG 15 page, which emphasises "sustainable land management practices to ensure the resilience of ecosystems and the services they provide, including soil fertility, clean water, and carbon sequestration." Life on Land - GDGU As part of its environmental governance, the university implemented campus wide rain water harvesting (14 borewells), water reuse systems, and hydroponic farming to reduce land degradation influence and support green cover regeneration.

h) Monitoring IUCN and Other Conservation Species

GDGU's commitment to biodiversity conservation is indicated by its "Gold" Green Campus certification under The Climate Project Foundation, India & South Asia. This recognition underscores implementation of structured systems for biodiversity, land use, waste, water and mobility management. Green Campus Certificate

GD Goenka University Awarded Gold under the Green Campus

i) Local Biodiversity Included in Planning and Development

The university's policies and academic curriculum reflect integration of biodiversity into planning and development. The School of Agricultural Sciences states its vision to produce socially responsible, self motivated future leaders capable of driving sustainable growth via interdisciplinary education and immersive field training. Vision - Mission_ GD Goenka University@ SOAS The broader platform further emphasises resilient terrestrial ecosystems and land based biodiversity services on its SDG 15 page.

Figure -Plantation, Landscaping & Biodiversity

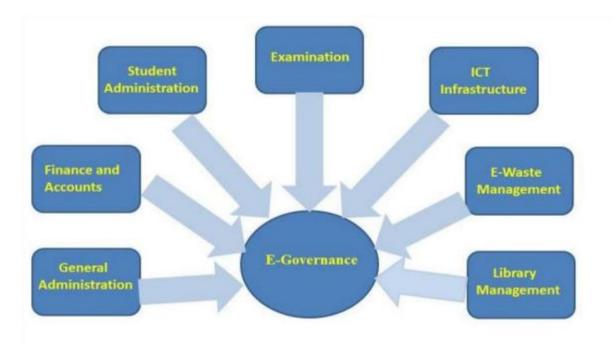
j) Alien Species Impact Reduction

The university's broader environmental management systems (waste segregation, plastic free campus, natural leaf mulching for soil health) demonstrate ecological awareness and habitats' resilience building, which indirectly contribute to reducing pressures from invasive species.

k) Collaboration for Shared Land Ecosystems

GDGU engages in multi stakeholder collaboration and community outreach: the institution has adopted 10 villages in the Sohna/Gurugram region, providing extension activities under its parent group's sustainability framework, thereby forging links between campus, local communities, and ecosystem services around shared land ecosystems.

Community Engagement


I) Policy on Hazardous Waste Disposal

GD Goenka University has established comprehensive policies for the management and disposal of hazardous waste, as outlined in its Administrative Manual (2023 24) and related institutional frameworks, including the Environment and Sustainability Policy (Chapter 5.13), Waste Management and Laboratory Waste Management Policy (Chapter 5.14), and Assets Management & Disposal of Assets Policy (Chapter 5.16). These policies set out systematic mechanisms for segregation of waste into biodegradable, non-biodegradable, and e-waste categories, ensuring safe handling and environmentally responsible disposal.

Kitchen and horticulture waste is composted to produce chemical-free manure for use on the university's agricultural farm, promoting circular resource use and soil health. The university also enforces a ban on single-use plastics, reducing potential environmental contamination. Collectively, these measures support clean land use, ecosystem protection, and compliance with sustainability and e-governance standards.

3. Research and Publications

GD Goenka University houses an active Department of Research and Development that supports PhD regulations, grant incentives, and publication rewards. (GD Goenka University) At the School of Agricultural Sciences, faculty specialise in soil science, climate-change mitigation, and sustainable agriculture — for example, Dr. P. R. Pradhan's expertise includes greenhouse-gas quantification from crop-production systems and sustainable agricultural practices. (school-of-agriculture/dr-rr-pradhan) The Master of Science in Agriculture programme explicitly incorporates modules on "Cropping Systems and Organic Farming" and "Principles and Practices of Water Management," reflecting the University's commitment to sustainable land use and ecosystem-friendly agriculture. (school-of-agriculture/msc-agriculture) Through these interdisciplinary education and research channels, GD Goenka University is building capacity in precision and eco-agriculture, soil and ecosystem health, and practical land-restoration methods — thereby aligning with SDG 15's objective to sustainably manage forests, combat desertification, halt and reverse land degradation, and prevent biodiversity loss.

INNOVATION AWARD RECOGNITION 2023

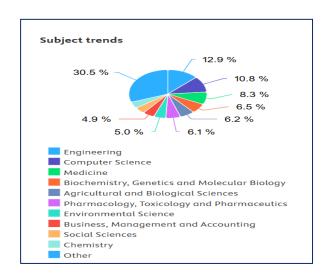
S No	Name of the Applicant	School/Dept Name	Journal Title	Paper Title	1st/Corresponding Author	SJR Based H Index	Amount
1	Dipesh Popli	SOES	Scientific Reports	A systematic survey of RUM process parameter optimization and their influence on part characteristics of nickel 718	1st Author	282 (H Index), SJR (0.97), Q1	20,000/-
2	Shashikant Gupta	SOES	Physics Letters B	Investigating the Hubble tension: Effect of cepheid calibration	Corresponding Author	275 (H Index), SJR (1.7), Q1	20,000/-
3	Rahul Pratap Singh	SOMAS	International Journal of Pharmaceutics	RGD-decorated PLGA nanoparticles improved effectiveness and safety of cisplatin for lung cancer therapy	Corresponding Author	244 (H Index), SJR (0.91), Q1	20,000/-
.4	Smita Kumari	SOES	Environmental Science and Pollution Research	Bioremediation of polycyclic aromatic hydrocarbons in crude oil by bacterial consortium in soil amended with Eisenia fetida and rhamnolipid	1st Author	154 (H Index), SJR (0.94), Q1	15,000/-
5	Deepayan Roy	SOAS	Frontiers in Physiology	Transcription dynamics of heat- shock proteins (Hsps) and endosymbiont titres in response to thermal stress in whitefly,Bemisiatabaci (Asia-I)	Corresponding Author	140 (H Index), SJR (1.03), Q1	15,000/-
6	Rahul Pratap Singh	SOMAS	Nanomedicine	Enhanced permeability and retention effect-focused tumor- targeted nanomedicines: latest trends, obstacles and future perspective	Corresponding Author	127 (H Index), SJR (0.7), Q1	15,000/-
7	Pawanjeet Kaur	SOES	Journal of Molecular Structure	Dimeric ZnII complex of carboxylate-appended (2-pyridyl) alkylamine ligand and exploration of experimental, theoretical, molecular docking and electronic excitation studies of ligand	1 st Author	117 (H Index), SJR (0.48), Q2	10,000/-
8	Sarita Devi(I* Author)/Deepika Garg(Correspondi ng Author)	SOES	Artificial Intelligence Review	A review of redundancy allocation problem for two decades: bibilometrics and future directions	Sarita Devi-1st Author, Deepika Garg-Corresponding Author	101 (H Index), SJR (2.49), Q1	10,000/-
9	Raunak Dhanker	SOES	Frontiers in Environmental Science	Green synthesis of silver nanoparticles from vegetable waste of pea Pisum sativum and bottle gourd Lagenaria siceraria: Characterization and antibacterial properties	Corresponding Author	61 (H Index), SJR (1.01), Q1	10,000/-
10	Shashikant Gupta	SOES	Journal of Astrophysics and Astronomy	Accreting white dwarfs: effect of WD composition on helium ignition during slow accretion	Corresponding Author	34 (H Index), SJR (0.47), Q2	10,000/-

Dr. PR Pradhan

Assistant Professor

Qualification: BSc (Agriculture), MSc (ICAR JRF) and PhD (IARI Meritorious & DST Inspire Fellowships) in Soil Science and Agricultural Chemistry

College/University: Orissa University of Agriculture & Technology, Bhubaneswar, Indian Agricultural Research Institute (IARI


Introduction: Pradhen's expertise is in sol science, climate change mitigation and sustainable agriculture. He has more than 8 years combined post-doctoral experience in research, short-term teaching to students, imparting training to farmers and technicians on soil-plant-environment, system as well as provision of consultancy on sustainable egriculture. He is also having experience of working with different analysical instruments like spectrophotometer, autoanalyser. CHNS elemental analyses, atomic absorption spectrometer mass spectrometer and gas chromatograph. and statistical softwares like MSTAT-C, SPSS and SAS Pradhan has completed in MSC (ICAR JRF) and HPD (JRR) Mentionous & DST Inspire Fellowships in Soil Science and Agricultural Chemistry from disa Agricultural Research Institute (IRR). New Delhi and BSC (Agricultural from Christa University of Agriculture & Technology, Brubbaneswer. He has post-doctoral work experience with International Cross Research Institute for the Semi-raid RDC; suit (SCIENCE). Health as this completed several online as well as offitine certificate courses on Remote Sensing, Climate Smart Agriculture, Digital Skills, Diversity and Indicusion, Clickal Citzeratify and Harassment Prevention conducted by IRRS-Deltaun, Future March (A.) 2958, ed. and stat Mile Learning He has received training on DSSAT crop modelling by researchers from Washington State University (University of Technology, Brisbane, Australia.

Publication

GD Goenka University Scopus Publication

SDG 15 - Life on Land - Publications - 39

S.No.	Туре	Title	Authors	Journal / Book	Year
1	Article	Harnessing cotton fibril	Jain, G., Jain, Y.,	Chemical Engineering	2025
		decorated ZIF-67 for bio-	Sikarwar, B.S.,	Journal	
		inspired all-weather	Mukherjee, M.,		
		sustainable photothermal	Chakrabarti, S.		
		desalination			
2	Conference	Wetland protection and	Pandey, S., Bansal,	E3s Web of Conferences	2025
	Paper •	Ramsar Convention: an	S., Vasmatkar,		
	Open access	empirical study of	A.D., Dharangutti,		
		wetlands in Bihar, India	Y.M.		
3	Review	Responses of natural	Rai, M., Dhanker,	Archives of Microbiology	2025
		plastisphere community	R., Sharma, N.,,		
		and zooplankton to	Du, Z., Mohamed,		
		microplastic pollution: a	H.I.		
		review on novel			
		remediation strategies			
4	Book	Cleaning up wastewater	Dhanker, R.,	Advanced Technologies	2025
	Chapter	through algae and its	Yadav, R.,	in Wastewater	
		integration with other	Khushboo,,	Treatment Food	
		processes	Kasere, S., Anshul	Pharmaceutical and	
				Chemical Industry	
5	Book	Nanotechnology-based soil	Patle, T., Tomar,	Harnessing Nanoomics	2024
	Chapter	improvement and	B., Parihar, S.S.,	and Nanozymes for	
		conservation for	Tomar, S.S., Singh,	Sustainable Agriculture	
		enhancement of crop	P.K.		
		production			
6	Review	Nanomaterials and biochar	Rajput, P., Kumar,	Science of the Total	2024
		mediated remediation of	P.V.D., Priya, A.K.,	Environment	
		emerging contaminants	, Wong, M.H.,		
			Rensing, C.		
7	Conference	Helium-Cooled Nuclear	Guven, U., Goel, E.,	Proceedings of the	2024
	Paper	Reactors: Powering the	Gurunadh, V.	International	
		Future of Deep Space		Astronautical Congress	
		Exploration		lac	
8	Book	Impact of nanotoxicity in	Pandey, B.K., Jha,	Microbiome Based	2024
	Chapter	soil microbiome and its	S., Jha, G.,,	Decontamination of	
		remedial approach	Shukla, S.K.,	Environmental	
			Dikshit, A.	Pollutants	
9	Book	Agronomic Strategies for	Kumar, D., Pandey,	Forests and Climate	2024
	Chapter	Enhancing Forest	V., Dixit, S.	Change Biological	
		Resilience to Climate		Perspectives on Impact	
		Change		Adaptation and	
				Mitigation Strategies	

10		T-1 - 6 - 11 - 61 - 11 - 11 - 11 - 11 -		F	2024
10	Book	The Soil-Climate Nexus in	Pandey, V., Kumar,	Forests and Climate	2024
	Chapter	Forest Ecosystems	D.	Change Biological	
				Perspectives on Impact	
				Adaptation and	
				Mitigation Strategies	
11	Article	Impact Assessment of	Rathee, R.K.,	Water and Energy	2023
		Water Conservation	Neelam, Mishra,	International	
		Measures Using Swat	S.K.		
		Model For Upper Yamuna			
		River Basin in India			
12	Book	Nanoparticle	Ahlawat, J.,	Sustainable Utilization of	2023
	Chapter	characterization and	Pandey, D.K.,	Nanoparticles and	
		bioremediation: Prospects	Chaudhary, R.,,	Nanofluids in	
		for ecological advantages	Parkhe, S.S.,	Engineering Applications	
			Dadheech, P.		
13	Article	Bioremediation of	Kumari, S.,	Environmental Science	2023
		polycyclic aromatic	Gautam, K., Seth,	and Pollution Research	
		hydrocarbons in crude oil	M., Anbumani, S.,		
		by bacterial consortium in	Manickam, N.		
		soil amended with Eisenia	,		
		fetida and rhamnolipid			
14	Book	Genomics Approach to	Kumar, V., Bilal,	Genomics to	2023
		Bioremediation Principles,	M.Q., Romanholo	Bioremediation	
		Tools, and Emerging	Ferreira, L.F., Iqbal,	Principles Applications	
		Technologies	H.M.	and Perspectives	
15	Conference	Nuclear Power Generation	Guven, U.,	Proceedings of the	2023
	Paper	Using Modular Helium	Gurunadh, V.	International	
	. ,	Cooled Reactors for	,	Astronautical Congress	
		Sustainable Lunar Bases		lac	
		and Moon Habitats		1.00	
16	Article •	Optimal feature selection	Singh, G., Nagpal,	Connection Science	2023
	Open access	and invasive weed tunicate	A., Vijendra, S.P.		
		swarm algorithm-based	,,		
		hierarchical attention			
		network for text			
		classification			
17	Review •	Nano-Enhanced Microbial	Rajput, V.D.,	Air Soil and Water	2023
-	Open access	Remediation of PAHs	Kumari, S.,	Research	-025
	Jpc dccc33	Contaminated Soil	Minkina, T.M.,		
		33114111114144 3011	Sushkova, S.N.,		
			Mandzhieva, S.S.		
18	Article	EXPLORING INTRASPECIFIC	Meenakshi, Rana,	Journal of Tropical	2023
10	Aiticle	PROVENANCE VARIATION	N.S., Bharti,,	Forest Science	2023
		IN SEED MORPHOLOGICAL	Sankhyan, N.,	Torest science	
			-		
		TRAITS OF ALBIZIA	Ghabru, A.		

		PROCERA IN MID- HIMALAYAN REGION OF INDIA			
19	Article • Open access	HFCVO-DMN: Henry Fuzzy Competitive Verse Optimizer-Integrated Deep Maxout Network for Incremental Text Classification	Singh, G., Nagpal, A.	Computation	2023
20	Book	Omics for Environmental Engineering and Microbiology Systems	Kumar, V., Garg, V.K., Kumar, S.N., Biswas, J.K.	Omics for Environmental Engineering and Microbiology Systems	2022
21	Article	Bioremediation of metal(loid) cocktail, struvite biosynthesis and plant growth promotion by a versatile bacterial strain Serratia sp. KUJM3: Exploiting environmental co-benefits	Mondal, M., Kumar, V., Bhatnagar, A.,, Chaudhuri, P., Biswas, J.K.	Environmental Research	2022
22	Article • Open access	Progress in microalgal mediated bioremediation systems for the removal of antibiotics and pharmaceuticals from wastewater	Chandel, N., Ahuja, V., Gurav, R.G.,, Yang, Y., Bhatia, S.K.	Science of the Total Environment	2022
23	Review • Open access	Biological Approaches Integrating Algae and Bacteria for the Degradation of Wastewater Contaminants—A Review	Mathew, M.M., Khatana, K., Vats, V.,, Dahms, H.U., Hwang, J.	Frontiers in Microbiology	2022
24	Article	SDG 4 and Program inclusive credit-based MOOCs in Higher Educational Institutions of India (HEIs); Students' perspective	Singh, A., Kakkar, K.B.	Transnational Marketing Journal	2022
25	Book Chapter	Climate uncertainties and biodiversity: An overview	Kamboj, R., Kamboj, S., Kamboj, S.,, Srivastav, A.L., Gautam, S.P.	Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence	2022

26	Conference	Text Classification using	Singh, G., Nagpal,	Procedia Computer	2022
	Paper •	Improved IWO-HAN	A., Vijendra, S.P.	Science	
	Open access				
27	Book	Phytoremediation: A	Saxena, K.,	Biotechnological	2022
	Chapter	Sustainable Solution to	Hussain, T.,	Innovations for	
		Combat Pollution	Dhanker, R., Jain,	Environmental	
			P., Goyal, S.	Bioremediation	
28	Book	Emerging bioremediation	Kumari, S., Singh,	Synergistic Approaches	2022
	Chapter	strategies for the removal	R., Mohapatra, B.	for Bioremediation of	
		of pharmaceutical		Environmental	
		combinations in		Pollutants Recent	
		wastewater		Advances and Challenges	
29	Book	Decontamination and	Sharma, A.,	Omics Insights in	2022
	Chapter	Management of Industrial	Sharma, S., Singh,	Environmental	
		Wastewater Using	C.S., Kumar, V.	Bioremediation	
		Microorganisms Under			
		Aerobic Condition			
30	Book	Omics Insights in	Kumar, V., Thakur,	Omics Insights in	2022
		Environmental	I.S.	Environmental	
		Bioremediation		Bioremediation	
31	Book	Enzyme Technology for	Parethe, S.S.,	Omics Insights in	2022
	Chapter	Remediation of	Romauld, S.I.,	Environmental	
		Contaminants in the	Pazhamalai, V.,	Bioremediation	
		Environment	Thiruvengadam, S.,		
			Kumar, V.		
32	Book	Microbial community and	Dey, S.,	Metagenomics to	2022
	Chapter	their role in	Shekhawat, M.S.,	Bioremediation	
		bioremediation of polluted	Pandey, D.K.,,	Applications Cutting	
		e-waste sites	Kumar, V., Dey, A.	Edge Tools and Future	
				Outlook	
33	Book	Genetically engineered	Arunraja, D.,	Metagenomics to	2022
	Chapter	microbes for	Romauld, S.I.,	Bioremediation	
		bioremediation and	Parthiban, B.D.,	Applications Cutting	
		phytoremediation of	Thiruvengadam, S.,	Edge Tools and Future	
		contaminated	Kumar, V.	Outlook	
		environment			
34	Book	Metagenomics to	Kumar, V., Bilal,	Metagenomics to	2022
		Bioremediation:	M.Q., Shahi, S.K.,	Bioremediation	
		Applications, Cutting Edge	Garg, V.K.	Applications Cutting	
		Tools, and Future Outlook		Edge Tools and Future	
				Outlook	

35	Book	Recent advances in	Bhuvaneswari, S.,	Metagenomics to	2022
	Chapter	bioremediation by	Illakiya Bharathi,	Bioremediation	
		metagenomics-based	K., Rajakumari, K.,	Applications Cutting	
		approach for	Kumar, V.	Edge Tools and Future	
		pharmaceutical derived		Outlook	
		pollutants			
36	Book	Science of Microorganisms	Hussain, T.,	Microbial Ecology of	2021
	Chapter	for the Restoration of	Dhanker, R.	Wastewater Treatment	
		Polluted sites for Safe and		Plants	
		Healthy Environment			
37	Conference	Can organic products be	Alam, A., Jamal	Proceedings of the	2021
	Paper	sustainable in present	Mahmood, S.M.	International Conference	
		business environment?		on Industrial Engineering	
				and Operations	
				Management	
38	Book	Sustainable crop	Haris, M., Shakeel,	Fungi Bio Prospects in	2020
	Chapter	production and	A., Ansari, M.S.,,	Sustainable Agriculture	
		improvement through bio-	Khan, A.A.,	Environment and Nano	
		prospecting of fungi	Dhankar, R.	Technology Volume 1	
				Fungal Diversity of	
				Sustainable Agriculture	
39	Book	Advances in fungi:	Dhanker, R., Tyagi,	Fungi Bio Prospects in	2020
	Chapter	Rejuvenation of polluted	P., Kamble, S.S.,	Sustainable Agriculture	
		sites	Gupta, D., Hussain,	Environment and Nano	
			T.	Technology Volume 2	
				Extremophilic Fungi and	
				Myco Mediated	
				Environmental	
				Management	

4. Impact and Way Forward

GD Goenka University actively supports SDG 15 through sustainable land use, biodiversity conservation, eco-friendly agricultural practices, and campus-wide waste management. The University integrates ecosystem awareness into its curriculum, research, and community outreach initiatives, fostering practical solutions for land restoration and habitat preservation. Moving forward, GDGU plans to expand research on soil and ecosystem health, strengthen biodiversity monitoring, and enhance community engagement in conservation activities. These efforts will promote resilient terrestrial ecosystems, safeguard native species, and reinforce the University's commitment to sustainable development.

